8 research outputs found

    Micromechanical modeling of the effect of elastic and plastic anisotropies on the mechanical behavior of β-Ti alloys

    Get PDF
    International audienceNear β-titanium alloys like Ti-5553 or Ti-1023 often exhibit bimodal phase constituents embedded in a retained β-phase matrix, which represents up to 40% of the volume. The highly elastic anisotropic β-phase may strongly influence the mechanical behavior of these alloys. The present work models the effect of the coupled role of β-phase elastic and plastic anisotropies on the local and overall responses of a fully β-phase polycrystalline aggregate like the Ti-17 alloy. The model is based on an advanced elasto-viscoplastic self-consistent (EVPSC) homogenization scheme solved by the "translated field" method together with an affine linearization of the viscoplastic flow rule. The effects of elastic anisotropy, crystallographic texture and grain morphology are theoretically studied during uniaxial tensile tests, tension-compression tests as well as multiaxial plastic yielding. First, it is shown that different sets of elastic constants taken from literature give rise to similar effective responses but to widely scattered incompatibility stresses. During uniaxial tensile loading, the highest local incompatibility stresses are achieved in oriented grains at the end of the elastic regime. Likewise, the effect of the β-grain morphology for realistic grain aspect ratios is seen to be weak on the overall behavior but strong on incompatibility stresses. In addition, the elastic anisotropy can have a significant influence on yield surfaces for β-forged textured polycrystals. Finally, the simulated Bauschinger stress monotonically increases with the elastic anisotropy coefficient for a random texture while it may be reduced in case of β-forged texture due to a competition between elastic and plastic sources of incompatibility stresses

    Stress partitioning in a near-β Titanium alloy induced by elastic and plastic phase anisotropies: experimental and modeling

    Get PDF
    International audienceThe load transfer induced by the elas c and plas c phase anisotropies of a Ti-10V-2Fe-3Al tanium alloy is studied. The microstructure consists in α nodules embedded in elongated β grains. EBSD performed on the alloy shows no crystallographic texture neither for α nor β phase. Tensile tests along the elonga on direc on, at a strain rate of 2 x 10-3 s-1 give a yield stress of 830 MPa with 13% duc lity. Simula ons based on an advanced two-phase polycrystalline elasto-viscoplas c self-consistent (EVPSC) model predict that the β phase first plas fies with a sequen al onset of plas city star ng from oriented β grains, then and finally oriented β grains. This leads to a strong load transfer from the β grains to the α nodules whose average behavior remains elas c up to high stresses (~940 MPa). However, addi onal simula ons considering exclusively β grains of specific orienta on show that the behavior of α nodules is strongly dependent on the β texture in which they are embedded. Especially, in β grains, which plas fy the latest, the model predicts the onset of plas city in favorably orientated α nodules. Moreover, the orienta on spread within the β grains can modify the average plas c behavior of α phase. In future, these results will be compared to data obtained from in-situ High Energy XRD and SEM/EBSD experiments

    Modélisation mécanique des tissus biologiques : application à la croissance des tumeurs solides et à la reconstruction multiéchelles des propriétés élastiques de la cuticule d'arthropode

    No full text
    Nowadays, the challenge of mechanobiology keeps growing. We are interested in the description of biophysical problems from a mechanical point of view with multiscale approaches.In the present study, we propose to study two examples highlighting the substantial role of mechanics on purely biological processes. 1) Tumor growth in the avascular stage: we propose a continuous model where tumor tissue is considered able to grow and to deform while obeying to conservation laws. Then, we propose to study the effect of the mechanical properties of the microenvironment- where lives the tumor- on the tumor development by integration of certain interfaces conditions tumor/microenvironment. 2) Reconstruction of the elastic properties of the arthropod cuticle: we propose a multiscale model of its mechanical behavior based on the hierarchical structure established in the literature. To remedy the under-estimation of the cuticle elastic properties of the model, we propose to include the interfaces to some scales that could improve the transmission of forces to the multiscale components of the composite (cuticle) and thus improve their macroscopic elastic properties.De nos jours, l’enjeu de la mécanobiologie ne cesse de grandir. On s’intéresse à la description des problèmes biophysiques d’un point de vue mécanique avec des approches multiéchelles. Dans ce travail, nous proposons d’étudier deux exemples mettant en évidence le rôle important de la mécanique sur des processus purement biologiques. 1) La croissance tumorale dans son stade avasculaire : nous proposons un modèle continu où le tissu tumoral est considéré capable de croître et de se déformer tout en obéissant aux lois de conservation. Nous proposons ensuite pour étudier l’effet des propriétés mécaniques du microenvironnement -où réside la tumeur- sur le développement tumoral d’intégrer certaines conditions aux interfaces tumeur/microenvironnement. 2) La reconstruction des propriétés élastiques de la cuticule d’arthropode : nous proposons un modèle multiéchelles de son comportement mécanique fondé sur la structure hiérarchique établie dans la littérature. Pour remédier à la sous-estimation du modèle des propriétés élastiques de la cuticule, nous proposons d’inclure les interfaces à certaines échelles qui pourraient améliorer la transmission des efforts aux constituants multiéchelles du composite (cuticule) et donc améliorer les propriétés élastiques macroscopiques de ce dernier

    Mechanical modeling of biological tissues : application to solid tumor growth and multiscale reconstruction of the elastic properties of arthropod cuticle

    No full text
    De nos jours, l’enjeu de la mécanobiologie ne cesse de grandir. On s’intéresse à la description des problèmes biophysiques d’un point de vue mécanique avec des approches multiéchelles. Dans ce travail, nous proposons d’étudier deux exemples mettant en évidence le rôle important de la mécanique sur des processus purement biologiques. 1) La croissance tumorale dans son stade avasculaire : nous proposons un modèle continu où le tissu tumoral est considéré capable de croître et de se déformer tout en obéissant aux lois de conservation. Nous proposons ensuite pour étudier l’effet des propriétés mécaniques du microenvironnement -où réside la tumeur- sur le développement tumoral d’intégrer certaines conditions aux interfaces tumeur/microenvironnement. 2) La reconstruction des propriétés élastiques de la cuticule d’arthropode : nous proposons un modèle multiéchelles de son comportement mécanique fondé sur la structure hiérarchique établie dans la littérature. Pour remédier à la sous-estimation du modèle des propriétés élastiques de la cuticule, nous proposons d’inclure les interfaces à certaines échelles qui pourraient améliorer la transmission des efforts aux constituants multiéchelles du composite (cuticule) et donc améliorer les propriétés élastiques macroscopiques de ce dernier.Nowadays, the challenge of mechanobiology keeps growing. We are interested in the description of biophysical problems from a mechanical point of view with multiscale approaches.In the present study, we propose to study two examples highlighting the substantial role of mechanics on purely biological processes. 1) Tumor growth in the avascular stage: we propose a continuous model where tumor tissue is considered able to grow and to deform while obeying to conservation laws. Then, we propose to study the effect of the mechanical properties of the microenvironment- where lives the tumor- on the tumor development by integration of certain interfaces conditions tumor/microenvironment. 2) Reconstruction of the elastic properties of the arthropod cuticle: we propose a multiscale model of its mechanical behavior based on the hierarchical structure established in the literature. To remedy the under-estimation of the cuticle elastic properties of the model, we propose to include the interfaces to some scales that could improve the transmission of forces to the multiscale components of the composite (cuticle) and thus improve their macroscopic elastic properties

    Mechanical modeling of biological tissues : application to solid tumor growth and multiscale reconstruction of the elastic properties of arthropod cuticle

    No full text
    De nos jours, l’enjeu de la mécanobiologie ne cesse de grandir. On s’intéresse à la description des problèmes biophysiques d’un point de vue mécanique avec des approches multiéchelles. Dans ce travail, nous proposons d’étudier deux exemples mettant en évidence le rôle important de la mécanique sur des processus purement biologiques. 1) La croissance tumorale dans son stade avasculaire : nous proposons un modèle continu où le tissu tumoral est considéré capable de croître et de se déformer tout en obéissant aux lois de conservation. Nous proposons ensuite pour étudier l’effet des propriétés mécaniques du microenvironnement -où réside la tumeur- sur le développement tumoral d’intégrer certaines conditions aux interfaces tumeur/microenvironnement. 2) La reconstruction des propriétés élastiques de la cuticule d’arthropode : nous proposons un modèle multiéchelles de son comportement mécanique fondé sur la structure hiérarchique établie dans la littérature. Pour remédier à la sous-estimation du modèle des propriétés élastiques de la cuticule, nous proposons d’inclure les interfaces à certaines échelles qui pourraient améliorer la transmission des efforts aux constituants multiéchelles du composite (cuticule) et donc améliorer les propriétés élastiques macroscopiques de ce dernier.Nowadays, the challenge of mechanobiology keeps growing. We are interested in the description of biophysical problems from a mechanical point of view with multiscale approaches.In the present study, we propose to study two examples highlighting the substantial role of mechanics on purely biological processes. 1) Tumor growth in the avascular stage: we propose a continuous model where tumor tissue is considered able to grow and to deform while obeying to conservation laws. Then, we propose to study the effect of the mechanical properties of the microenvironment- where lives the tumor- on the tumor development by integration of certain interfaces conditions tumor/microenvironment. 2) Reconstruction of the elastic properties of the arthropod cuticle: we propose a multiscale model of its mechanical behavior based on the hierarchical structure established in the literature. To remedy the under-estimation of the cuticle elastic properties of the model, we propose to include the interfaces to some scales that could improve the transmission of forces to the multiscale components of the composite (cuticle) and thus improve their macroscopic elastic properties

    Micromechanical Modeling of the Elasto-Viscoplastic Behavior and Incompatibility Stresses of β-Ti Alloys

    No full text
    Near β titanium alloys can now compete with quasi-α or α/β titanium alloys for airframe forging applications. The body-centered cubic β-phase can represent up to 40% of the volume. However, the way that its elastic anisotropy impacts the mechanical behavior remains an open question. In the present work, an advanced elasto-viscoplastic self-consistent model is used to investigate the tensile behavior at different applied strain rates of a fully β-phase Ti alloy taken as a model material. The model considers crystalline anisotropic elasticity and plasticity. It is first shown that two sets of elastic constants taken from the literature can be used to well reproduce the experimental elasto-viscoplastic transition, but lead to scattered mechanical behaviors at the grain scale. Incompatibility stresses and strains are found to increase in magnitude with the elastic anisotropy factor. The highest local stresses are obtained toward the end of the elastic regime for grains oriented with their <111> direction parallel to the tensile axis. Finally, as a major result, it is shown that the elastic anisotropy of the β-phase can affect the distribution of slip activities. In contrast with the isotropic elastic case, it is predicted that {112} <111> slip systems become predominant at the onset of plastic deformation when elastic anisotropy is considered in the micromechanical model

    Stress partitioning in a near-β Titanium alloy induced by elastic and plastic phase anisotropies: experimental and modeling

    No full text
    The load transfer induced by the elastic and plastic phase anisotropies of a Ti–10V–2Fe–3Al titanium alloy is studied. The microstructure consists in α nodules embedded in elongated β grains. EBSD performed on the alloy shows no crystallographic texture neither for α nor β phase. Tensile tests along the elongation direction, at a strain rate of 2 x 10-3 s-1 give a yield stress of 830 MPa with 13% ductility. Simulations based on an advanced two-phase polycrystalline elasto-viscoplastic self-consistent (EVPSC) model predict that the β phase first plastifies with a sequential onset of plasticity starting from oriented β grains, then and finally oriented β grains. This leads to a strong load transfer from the β grains to the α nodules whose average behavior remains elastic up to high stresses (~940 MPa). However, additional simulations considering exclusively β grains of specific orientation show that the behavior of α nodules is strongly dependent on the β texture in which they are embedded. Especially, in β grains, which plastify the latest, the model predicts the onset of plasticity in favorably orientated α nodules. Moreover, the orientation spread within the β grains can modify the average plastic behavior of α phase. In future, these results will be compared to data obtained from in-situ High Energy XRD and SEM/EBSD experiments
    corecore